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I. Technical Summar,

A. Background and Accomplishments

The research performed under this grant had as its objective the

development of a ray-optical theory for the behavior of eigenvalues and

eigenmodes in unstable laser resonators. The detailed program was de-

termined 4., cu isultation with Drs. J. Hanlon, R. Butts, and G. Dente at

the Air For Weapons Laboratory, Albuquerque, New Mexico, who served

successively as technical project monitors. The investigation proceeded

along two principal lines.

1. Waveguide Analysis

Further exploration of the waveguide analysis of Chen and Felsen1
a

and Santana and Felsen was undertaken to explain, on a coupled waveguide

mode basis, the structure of the eigenmode charts obtained by the con-

ventional "brute-force" numerical solution of the resonator integral equation.

Here, the resonator is regarded as a waveguide perpendicular to its axis,

with the mirrors representing the waveguide boundaries (Fig. 1). Coupling

between selected modes in this highly overmoded structure is introduced

by the mirror edges which represent waveguide discontinuities. The scatter-

ing from these discontinuities is taken into account by a ray-optical analysis

incorporating the constructs of the geometrical theory of diffraction (GTD). 3

These edge-diffracted fields are then converted into modal coupling coef-

ficients to permit the formulation of a waveguide mode resonance equation

("transverse resonance" equation) that specifies the eigenvalues of the composite

resonator modes. Thus, the method involves a combination of waveguide

mode and ray-optical techniques.

The method had previously been applied successfully to sharp-edged,

aligned, symmetrical strip and circular mirror configurations. Its ex-
4

tension to misaligned sharp-edged strip mirrors (Fig. 2) and to aligned strip

or circular mirrors with rounded edges (Fig. 3) was undertaken under this

grant. 5 The results for misalignment were compared to numerical data

based on the resonator integral equation, and were found to be interpretable

in terms of coupling between waveguide modes with even and odd symmetry

with respect to the resonator axis. The coupling disappears when the mirrors

are perfectly aligned. New results for very small misalignment, inadequately

explored in the literature, were found from a careful study of the transverse
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resonance equation for different ranges of equivalent Fresnel numbers, N 6
eq"

5
The results obtained for round-edged mirrors were entirely new.

Of particular interest was the demonstrated existence of an azimuthally

symmetric low-loss detached mode for spherical mirror structures; mode

detachment here is not observed in the sharp-edged mirror case. For

strip mirrors (two-dimensional case), edge rounding was shown to intro-

duce detachment of the azimuthally symmetric mode at lower values of N eq'

and increased mode separation (see Appendix A). The waveguide method

was shown to be effective for simple calculation of the eigenvalues, and

for cogent interpreation of the complicated eigenmode charts. This is due

to the fact that coupling between only two systematically selected modes is

adequate to explain the resonances. However, the more sensitive eigen-

mode fields on the mirrors are not well enough expressed in terms of this

simple model; coupling to many modes would be required to yield adequate

mode shapes. For this reason, the waveguide method is not regarded as

an attractive alternative for computation of unstable resonator modal fields.

Z. Ray-Optical Analysis

By an alternative approach, an eigenmode in the unstable resonator

may be regarded as being established by self-consistent treatment of the

mirror-edge-diffracted rayr-optical fields that find their way back into the

resonator by direct and multiply reflected paths between the mirrors. This

direct ray tracing method, performed according to the rules of GTD, is

hampered by the existence of ray fields with very many reflections, there-

by making direct summation over these fields impractical and inaccurate.

A breakthrough in our analysis of this problem has been the ability to deal

collectively with the higher order reflected rays. Thus, the resonant field

is represented in terms of a selected number of lower-order reflected rays

plus a collective ray that accounts for the cumulative effect of all higher

order reflections. This procedure was found to yielt not only a numerically

attractive and accurate alternative to the "brute-force" method of integrating

the resonator integral equation, but it also furnishes some penetrating in-

sights into the behavior of the unstable resonator in purely ray-optical

terms, without recourse to the resonator integral equation.

This study was motivated by the asymptotic theory for the resonator

integral equation developed by Horwitz 8 and applied by him 9 and others 10

to various resonator configurations. Here, it was shown that the solution
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of the eigenvalue problem could be reduced to solution of a polynomial

equation, and that the corresponding eigenmode fields can be represented

in terms of a set of certain wave functions. The method, which was found

to yield remarkable agreement with eigenvalues and eigenmode shapes ob-

tained by the direct numerical procedure, is based on a postulated form of

the solution (ansatz). While the postulates were qualitatively identified

with various ray-optical phenomena, no quantitative correspondence and

interpretation was established.

Our ray-optical method provides a complete and quantitative ray-

optical theory of the unstable resonator. The results of the Horwitz method

emerge from our analysis as a special case, and each element in the

Horwitz ansatz is derived deductively. To test our method, it was first

applied (with complete success) to symmetric, aligned, sharp-edged strip
11

and spherical mirror structures. It was also applied to the round-edged
12

mirror case. From the understanding of the physical phenomenology

gained thereby, it appeared feasible to attack more systematically other

resonator configurations that depart from the idealized shapes investigated

originally. A first step in this direction was an application of the ray method
13

to half-symmetric resonators with internal axicon (HSURIA), which pro-

vided an understanding of the effect of the internal axicon reflector, and of

the influence of shielding of the axicon tip.

B. Summary of the Ray Method

As noted in Section A2, a key feature in our procedure has been the

ability to show that ray-optical phenomena descriptive of high-order multiple

reflections can be treated collectively. Thus, our approach involves the

simultaneous use of individually tracked ray fields as well as collective ray

fields that resemble modal congruences. Modal ray congruences describea
self-consistent fields in resonators with infinite mirrors, and they are

exemplified in a special case by the two self-replicating cylindrical wave

fronts of Siegmann. More generally, these wave fronts, and the associated

normal ray congruences, are generated by elliptical caustics when the

infinite mirrors ha-e hyperbolic shape.

A second key feature has been our ability to construct the resonance

equation for the eigenvalues and eigenmodes by invoking self-consistency
7

of the modal fields without recourse to the integral equation. Thus, both

-3-
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the fields per se and the resonance condition have been formulated entirely

within a deductive ray-optical framework.

Our procedure for the symmetrical strip resonator involves the
13

following steps:

1. Determining the collective (modal) ray fields (self-replicating

wave fronts and ray congruences) that describe the fields in a resonator

with infinite hyperbolic mirrors. This incident modal field, which can be

found by direct ray-optical techniques or by the WKB method, provides the

excitation. Its precise form is determined by the elliptic caustic which is

characterized by the initially assumed caustic parameter, p (Figs. 4(a)

and (b)).

Z. Accounting for edge diffraction, when the mirrors are finite,

by postulating equivalent edge line currents with non-isotropic radiation

pattern (Fig. 5). The pattern function f(e, el) in the direction e is deter-
mined from the known solution of edge diffraction by a half-plane when an

incident plane wave arrives at the angle e. The local modeling of the

curved mirror near the edge by a plane surface and of the modal ray field

incident on the edge by a plane wave is legitimized by the rules of GTD.

The starting amplitude of the field on each edge-diffracted ray thus depends

on ei which, in turn, depends on the caustic parameter p.

3. Tracking of edge-diffracted ray fields into the resonator. This

tracking takes place via the well-known rules of geometrical optics, relying

on optical path lengths to establish phase (Fig. 6(a)) and on conservation of

energy in a ray tube to establish amplitude (Fig. 6(b)). Various species of

multiply reflected rays are identified in Fig. 6(a). Some of these are re-

flected out before they reach the resonator axis while others pass through

the resonator from one side to the other.

4. Summing of edge-diffracted ray fields with many reflections in-

to a collective closed form. These collective rays appear to emanate from

the foci of the hyperbolic mirror system and thus resemble the self-replicating

modal ray fields that provided the initial excitation (Fig. 7).

5. Determining the total singly diffracted ray-optical field. The

field due to single diffraction at each edge, as observed at a point within

the resonator, consists of ZN individually reflected ray fields plus the field

-4-
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carried along the collective ray, which accounts for all ray fields having

undergone more than N reflections (Fig. 8). The choice of N is not critical

but must be large enough to legitimize the collective treatment.

6. Determining the ray-optical field due to double diffraction. When

the observation point is chosen at an edge, the (ZN+I) singly diffracted ray

fields in Fig. 8 provide the excitation for double diffraction. The resulting

doubly diffracted ray fields are tracked through the resonator in precisely

the same fashion as the singly diffracted fields. However, the excitation

amplitude of each ray species now depends on the angle of incidence en of

each of the (2N+I) singly diffracted rays, thereby requiring the pattern
function f(e, en) instead of f(E, e ) (Fig. 9).

7. Establishing the resonance condition. Resonant solutions for

the unstable open resonator require self-sustaining fields in the absence of

excitation. Thus, the field incident on an edge after a certain number of

diffractions must be identical with the field incident on the same edge before

the last diffraction took place. Therefore, with reference to the above, the

singly diffracted fields incident on an edge must be the same as the doubly

diffracted fields (Figs. 8 and 9). Imposition of this condition yields the

equation for the resonant eigenvalues. These eigenvalues are directly re-

lated to the caustic parameter p in Fig. 4a. In essence, the resonant p

values adjust the initially assumed incident ray congruences so that the re-

sulting field in the finite mirror structure is self-resonant.

8. Determining the eigenmode fields. These are given by the (ZN+I)

ray-optical fields when the resonant eigenvalues are inserted for the caustic

parameter p that appears in each of the ray field expressions.

The details of the above-described formulation have been given in

references 7 and 13. It has also been shown there how each of the wave

functions and recursion relations in the Horwitz ansatz 8 can be interpreted

ray-optically, and how the ray-optically derived resonance condition reduces

to that of Horwitz after certain approximations. The same correspondence

between the ray-optical approach and the procedure of Butts and Avizonis10

for symmetric circular mirror configurations has also been demonstrated. 11

Here, the simple ray-optical method requires correction near the resonator

axis where edge diffracted fields due to the circular rim accumulate.

-5-
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C. Implications of the Ray Method

The successful ray-optical solution :)f the ideal symmetric strip ari

circular mirror resonators has demonstrated two features with major im-

plicatioris for more general problems:

1. The ability to construct the field within the resonator by local

tracking along geometric-optical ray paths, with the possibility of summing

ray fields with manr reflections into a collective form.

2. The ability to construct a resonance equation by invoking self-

consistency on the ray fields before and after a successive diffraction event.

Feature 1 implies that modifications of the ideal geometry can be

accounted for by corresponding modifications of the appropriate ray fields.

This is particularly relevant when these modifications occur locally (as

when the medium is inhomogeneous, or when there are local perturbations

on the mirrors) since the rays describe locally tracked fields. The ray

tracking also clarifies obscuration and blocking effects introduced by axicons

in annular resonator configurations, by scraper mirrors or by coupling

apertures.

Feature 2 implies that once the ray structure and the ray fields have

been determined, these fields can be used directly to construct the resonance

equation without the need for going through the resonator integral equation.

In fact, by appropriate categorization of various ray species, one may ascertain

the influence of each on the resonance behavior.

These aspects are illustrated for the HSUR.IA (half symmetric unstable

resonator with internal axicon). Various possible ray species are depicted

in Fig. 10. They are ordered like those in the equivalent symmetric circu-

lar mirror configuration, which can be constructed from the HSURIA by

imaging and unfolding. Due to the blocking effect of the axicon, some of

the rays of the unfolded structure are eliminated. The categorization into

existing and blocked rays can be undertaken directly in the symmetric

resonator if the position of various rays relative to the axicon tip location

is observed (Figs. 11 and 12). The resulting resonance condition is the

same as for the symmetric unfolded resonator provided that one eliminates

therefrom the blocked rays. However, fields on rays reflected near the

axicon tip should be modified to account for the blocking ("reflected-ray

-6-



boundary" effect). Tip diffracted rays could be included to refine the

resonance condition.

D. Conclusion

The ray method has been developed sufficiently to warrant applica-

tion to various problem areas related directly to high-power laser systems

now under development, and to provide alternatives to, and independent

checks of, the purely numerical procedures now in use. Some topics for

investigation have been suggested by us, which address remaining questions

in the conventional symmetrical mirror unstable resonator, and also in annular

resonators with conical elements, which are gaining increased importance.

However, these studies, which include effects of scraper mirrors, coupling

apertures in injection-locked resonators, medium inhomogeneities, etc.,

could not be performed within the grant period.
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Resonator
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Modal caustic

dl

Modal propagation
region

/14 Waveguide

axis

2L R

\R
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Fig. 1. Waveguide model of the unstable resonator with hyperbolic
mirrors. A waveguide mode in the infinite mirror structure
(solid plus dashed curves) is described by an elliptic caustic
with foci at ±d and caustic parameter p. Truncation of the
mirrors (solid curves only) causes waveguide mode coupling
and reflection. To determine the mode coupling and reflection
coefficients, the local regions near the edges may be regarded
either as equivalent parallel plane regions (for small Fresnel
numbers), or as individual equivalent half-plane scattering
centers (for large Fresnel numbers). Resonance defining the
resonator eigenmodes is established by invoking a "transverse
resonance" condition on the waveguide modes, which ensures
self-consistent reflection of modal fields traveling to the
right (I) and left (R).
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faces in an elliptic coordinate sys-
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Fig. 2 -Resonator with misaligned circular strip mirrors
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Edge termination
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2L
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Fig. 3. Resonator with rounded edges. At y=y, a section of
waveguide with circular cylindrical boundaries of radius
rZ is joined smoothly to a cylindrical resonator which
otherwise would be sharp-edged.
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• axicon tip

A

Fig. 11l(b). Equivalent construction of the domain in Fig. 11l(a) (shown
shaded) directly in the unfolded configuration, noting placementof the axicon tip.

.27/



\ ~ / axicori
tip

AK\ /

Fig. 12. Construction of the domain of the n= -2 ray (shown shaded) by
the procedure in Fig. I11(b).
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RAY-OPTICAL C.%L.ULATION OF EIGEYMODE BEHAVIOR OF UNSTABLE

LASER RESONATORS WITH ROUNDED EDGES

C. Santana

Instituto de Pesquisas Espaciais - INPE

Conselho Nacional de Desenvolvimento Cientifico e Tecnologico - CNPq
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ABSTRACT

The eigenmode resonance equation previously developed by the ray-optical

method of analysis for unstable, symmetric, bare resonators with strip and

spherical mirrors is employed here to establish the basic properties of resonators

with rounded mirror edges. The numerical results obtained in this manner are far

more comprehensive than those presented earlier from a waveguide model approach

to the resonator problem. As in this earlier study, edge rounding is found to

improve mode separation and to shift the onset of low-loss mode detachment to

lower Fresnel numbers. It is also found that a very simple closed form expression

predicts quite accurately the low-loss mode behavior after it has detached from

the remaining mode spectrum.
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I. Introduction and Summa./

Edge rounding of strip mirrors in unstable symmetric laser resonators

initiates detachment of the low-loss eigenmode at small values of the equivalent

Fresnel number. For the spherical mirror geometry, rounded edges produce a

low-loss detached mode that is not found in the sharp-edged configuration. Mode

discrimination is improved in both cases. Because of these attractive features

which have been pointed out in a previous publication l , it is desirable to

generate detailed eigenmode charts that exhibit the dependence of the resonance

on the edge radius. The resonator edges are modeled by an abrupt change in the

mirror curvature as shown in Fig. 1. The termination of the added mirror section

is assumed to be constructed so as to render its effect negligible.

Some preliminary results obtained via the waveguide approach to the resonator

problem have already been presented1 . The waveguide resonance equation is

convenient for predicting the physical mechanism responsible for the resonance

and for dealing with the lowest-order detached mode, but it is less easily

implemented for determination of the behavior of the higher order modes. An

alternative view of the resonant wave process is obtained by a ray-optical

analysis 2 - which leads to a resonance equatinm that is equally applicable to

the lowest order and higher-order modes. The ray-optical resonance equation for

round-edged mirrors' is employed for the generation of the data in this

communication.

H. Strip Resonators

A. Resonance Equation

From the analysis in Ref. 2, the eige--vaiues N for the even and odd symmetric

modes in unstable strip resonators are given by the polynomial equation
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- () E2 (-1

(X )N I + C2 N (1 - ) +L= (1 -M-) 3  (I +M- 3

+ 2C 2 exp(i2v.1Neq 0

for the even modes, and

(N 1)5/2 EZ (1) -EZ (-1) +
(XM- I)X + E2  E ( M- 2 Z +

L ( (I -M - 9) 0 ( M-

-N+ 2zM- exp(i27N ) = 0 (2)eq

for the odd modes. The notation is the same as in Ref. 2, with

E2 = (r/r2 - I) M -i F exp(i-,/2) 13/2 (3)
4T2 I + 1 L 2 N

eq

The power loss per transit is related to the eigenvalue A and the magnification

M by

PL = 100 (I- H X 2 /M) (4)

For the N values for which the resonator loss approaches the geometrical
eq

optics value (corresponding to i\H z 1), an approximate equation for the eigenvalue

of the even symmetric mode, which is the lowest-loss mode 5, can be found by

iteration as in Ref. 3:

2e2 exp(i2 Neq)
AZ i- (5)

l-2C 2Nexp(i2iN )

provided that

Zn( 4-rNeq)/ZnM N - ZnM/2[E2! (6)

This simplified equation developed from the ray-optically derived polynomial

resonance equation is in agr -ent with that obtained from the waveguide analysis.
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B. Numerical Results

The full resonance equation (1) has been solved numerically for the

eigenvalues of an unstable strip resonator with rounded edges having a

magnification factor M - 2.9. Figure 2 shows the magnitude of k versus N for

an edge rounding factor r/r 2 = 100. It is seen that, in conformity with the

results of Ref. 1, the essential effect of edge rounding in strip resonators is

the formation of a low-loss detached mode at lower Fresnel numbers than for the

sharp edge case. In a sharp edged strip resonator with M = 2.9, mode detachment

accurs only for Neq > 9, 5 in contrast to Neq > 4 as seen from Fig. 2. A

comparison of Fig. 2 with the plot of !\< for a sharp edged resonator with the

same parameter values5 reveals that edge rounding also enhances mode

discrimination.

Figure 3 shows a plot of 110 versus Neq for the same resonator as in Fig. 2,

but with r/r 2 = 30. We note that as the edge effect is deemphasized by decreasing

r/r 2 , the geometrical optics value is attained for smaller Neq values and the

separation between the low-loss detached mode and the next higher order modes is

increased.

The simplified eq. (5) can be utilized for the calculation of X in the Neq

region where 1X; z i, which generally corresponds to the detached mode region. In

fact, for Neq > 2.5, the jX1 values for the lowest-loss modes of Figs. 2 and 3

if calculated via eq. (5), deviates negligibly from the values calculated by the

full resonance equation. Equation (5) is also in excellent agreement with the

power loss calculations effected by modal analysis i .

In the numerical compuriions, it has been found that the parameter N,

which characterizes the number of non-modal ray fields can be set in accordance

with Horwitz's criterion MN = 250 %eq.

-33-

- - - -- ~- -. - ------. . - -



.4

For plotting the eigenvalue cuL.,!s, the roots of the full resonance equation

(1) were found at each Neq value, in steps of 0.1, except in the vicinity of

those Neq values where mode detachment was to be ascertained. There, the step size

was reduced to 0.01 and the detailed evolution of the complex values of X was

determined in order to show which modes evolved into which. It is found that if

the step size is not reduced, one can easily arrive at a false conclusion about

the onset of mode detachment.

III. Spherical Mirrors Resonators

A. Resonance Equation

The polynomial equation for the eigenvalues of an unstable resonator with

round-edged circular hyperbolic mirrors can be found from the results of Ref. 2:
6N

(\Mm - l)a L I - (-i)m t(I - M- 2 F, (I) +
2 £1 ,m

7 2iN )m
+ m' (-i) exp(i2rNeq e ! = 0 (7)

M! eq N J

where

= i(r/r2 - 1) M- 1 (8)

4-N M + I
eq

I i2'TNe i +-
F CmX) =2 exp , a 1

Z 2Z
i Y )[ + 3x2 M-  -Ji (Y xM -  3 + x M-2

Z + - xL (9)

and the remaining terms are in conformity with the definitions of Ref. 4.

The power loss per trar . is related to and M via

PL = 100 F i - ( / M) -2 . (10)
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As in the cylindrical mirror case an approximate equation for the

eigenvalues, valid when the ' ss approaches the geometrical optics limit X=I

for the azimuthally symmetric modes (m=O), can be found by iteration of eq. (7):

6exp(i2rN e)

I- I N exp(i2TN )
eq

with the restriction

Zn(41N )/ZnM N < n/ (12)
eq

B. Numerical Results

To assess the effects of edge rounding in spherical mirror unstable

resonators, the full resonance equation (7) was solved numerically for various

resonator parameters. Figures 4 and 5 show plots of JXJ versus N for a resonatoreq

with M=2 and r/r2 = 100. The most obvious difference between these plots and their

correspondents for a sharp edged resonator 6 is the appearance of a detached mode

for N > 59, thereby confirming the prediction made by modal analysis, that
eq

mode detachment does take place in three-dimensional resonators with rounded

edges'. One may also observe that the eigenvalue approaches the geometrical optics

limit 1\I = 1 faster than in the sharp-edged configuration. Another characteristic

of edge rounding is illustrated in Fig. 6, which is a plot of X' versus N for~eq

the same resonator parameters as in Figs. 4 and 5, but this time for the lowest

order asyrmmetric (m-l) modes. Figure 6 should be compared with Fig. 5 of Ref. 6

to conclude that edge rounding improves the discrimination between the dominant

modes for m=O and m=l, even in the N range where mode detachment for m=O haseq

not yet been attained. The '.gner losses achieved by edge rounding for the m-l

modes are welcome since these modes are influential in beam deterioration for not

having a maximum at the center. All of these features caused by edge rounding are
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in agreement with the predictions made by modal analysis, I where it was

anticipated that the cigenvalue for the m=l modes should approach the geometrical

optics limit = -iM only for very large N values.eq

Depending on the edge rounding parameter r/r2 , mode detachment for three-

-dimensional resonators may occur for low Fresnei numbers, as is the case

illustrated in Fig. 7, where ,N' is plotted versus N for a resonator with
eq

M = 2.5 and r/r2 = 16.7. Here, detachment starts for N 6.eq

The simplified equation (10) gives good accuracy in the detached mode region

and is also in very good agreement with the power loss per transit calculations

by modal analysis.1
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FIGURE CAPTIONS

Fig. 1 - Physical configuration. For strip or circular mirror resonators, the

rounded edge is modeled by a circular section with radius r2 , while

the radius of curvature of the main mirror is r.

Fig. 2 - Modulus of X versus N for a strip mirror resonator with M - 2.9 andeq

r/r2 = 100. Even symmetric modes.

Fig. 3 - Modulus of . versus N for a strip mirror resonator with M - 2.9 andeq

r/r2 = 30. Even symmetric modes.

Fig. 4 - Modulus of . versus N for a circular mirror resonator with M - 2 andeq

r/r2 - 100. Azimuthally symmetric modes.

Fig. 5 - Modulus of N versus N for a circular mirror resonator with M - 2 and
eq

r/r2 - 100. Azimuthally symmetric modes (m-0). The stationary roots

have been suppressed.

Fig. 6 - Modulus of N versus N for a circular mirror resonator with M - 2 andeq

r/r2 - 100. First asymmetric modes (m=l).

Fig. 7 - Modulus of versus N for a circular mirror resonator with M - 2.5
eq

and r/r2 - 18.0. Azimuthally symmetric modes (m-0).
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